function minPathSum(grid: number[][]): number {
const m = grid.length; // Number of rows
const n = grid[0].length; // Number of columns
// Initialize the DP table
const dp: number[][] = Array.from({ length: m }, () => Array(n).fill(0));
// Base case: start at the top-left corner
dp[0][0] = grid[0][0];
// Fill the first row (can only move right)
for (let i = 1; i < n; i++) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
// Fill the first column (can only move down)
for (let i = 1; i < m; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// Fill the rest of the DP table
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
// The value at dp[i][j] is the value in grid[i][j] plus the minimum of
// the path sums to reach (i-1, j) and (i, j-1)
dp[i][j] = grid[i][j] + Math.min(dp[i - 1][j], dp[i][j - 1]);
}
}
// The optimal solution is in the bottom-right corner of the DP table
return dp[m - 1][n - 1];
}