Median of Two Sorted Arrays in Rust

impl Solution {
    pub fn find_median_sorted_arrays(nums1: Vec<i32>, nums2: Vec<i32>) -> f64 {
        let (nums1, nums2) = if nums1.len() > nums2.len() {
            (nums2, nums1)
        } else {
            (nums1, nums2)
        }; // Ensure nums1 is the smaller array
        let (m, n) = (nums1.len(), nums2.len()); // Get the lengths of the two arrays

        let mut imin = 0; // Start of the binary search range
        let mut imax = m; // End of the binary search range
        let half_len = (m + n + 1) / 2; // Middle point of the combined arrays

        while imin <= imax {
            let i = (imin + imax) / 2; // Middle point of the binary search range
            let j = half_len - i; // Corresponding point in the larger array

            if i < m && nums2[j - 1] > nums1[i] {
                // nums1's element is too small, increase the search range
                imin = i + 1;
            } else if i > 0 && nums1[i - 1] > nums2[j] {
                // nums1's element is too large, decrease the search range
                imax = i - 1;
            } else {
                // Correct partition found
                let max_of_left = if i == 0 {
                    nums2[j - 1]
                }
                // Edge case: partition is at the start of nums1
                else if j == 0 {
                    nums1[i - 1]
                }
                // Edge case: partition is at the start of nums2
                else {
                    nums1[i - 1].max(nums2[j - 1])
                }; // General case: max of the last elements in the left halves

                if (m + n) % 2 == 1 {
                    return max_of_left as f64;
                } // If total length is odd, return max of left elements

                let min_of_right = if i == m {
                    nums2[j]
                }
                // Edge case: partition is at the end of nums1
                else if j == n {
                    nums1[i]
                }
                // Edge case: partition is at the end of nums2
                else {
                    nums1[i].min(nums2[j])
                }; // General case: min of the first elements in the right halves

                return (max_of_left + min_of_right) as f64 / 2.0; // If total length is even, return average of max of left and min of right elements
            }
        }

        0.0 // Return 0.0 if no solution found (should not happen for valid input)
    }
}

Next